
The zahl2string package∗

Jonathan Sauer
jonathan.sauer@gmx.de

2004/11/25

Abstract

This file describes the zahl2string package that provides macros for for-
matting numbers as german words, i.e. ‘1’ gets formatted as ‘eins’.

Contents

1 Introduction 1

2 Description of the macros 2
2.1 LATEX macros . 2
2.2 General macros . 2

3 Examples 2

4 Options 4

5 Creating your own formatting 4

6 Notes/Limitations 5

7 Implementation 5
7.1 Main macros . 5
7.2 Option processing . 7
7.3 Internal macros . 7

7.3.1 Splitting and formatting a number 7
7.3.2 Macros for formatting ‘1’ to ‘19’ 12

1 Introduction

Sometimes, for example when formatting a chapter title, you do not want to say
‘Kapitel 1’ (‘Chapter 1’) but ‘Kapitel eins’ (‘Chapter one’) or ‘Erstes Kapitel’

∗This document corresponds to zahl2string.sty v1.2.1, dated 2004/11/25.

1

(‘First chapter’). This package provides macros to format a LATEX-counter or
more generally speaking a number as a german word.

2 Description of the macros

All macros format numbers in the range 0 to 999,999,999. Larger numbers are
formatted as an arabic number, smaller numbers are formatted as zero. This can
be changed using the package options described on page 4.

2.1 LATEX macros

The four macros \numstring, \Numstring, \ordstring and \Ordstring are
macros taking a LATEX-counter as their only argument.

Usage: \numstring {〈LaTeX counter〉}.\numstring

Formats a LATEX counter in the range of 0 to 999,999,999 as a word.
Usage: \Numstring {〈LaTeX counter〉}.\Numstring

Formats a LATEX counter in the range of 0 to 999,999,999 as words, where the
first letter is a capital letter.

Usage: \ordstring {〈LaTeX counter〉}.\ordstring

Formats a LATEX counter in the range of 0 to 999,999,999 as an ordinal word.
Usage: \Ordstring {〈LaTeX counter〉}.\Ordstring

Formats a LATEX counter in the range of 0 to 999,999,999 as an ordinal word,
where the first letter is a capital letter.

2.2 General macros

The four macros \@numstring, \@Numstring, \@ordstring and \@Ordstring as
well as their aliases \numstr, \Numstr, \ordstr and \Ordstr are macros taking
a number or a TEX count register as their only argument.

Usage: \@numstring {〈number〉} / \numstr {〈number〉}.\@numstring

\numstr Formats a number or a TEX count register in the range of 0 to 999,999,999 as
words.

Usage: \@Numstring {〈number〉} / \Numstr {〈number〉}.\@Numstring

\Numstr Formats a number or a TEX count register in the range of 0 to 999,999,999 as
words, where the first letter is a capital letter.

Usage: \@ordstring {〈number〉} / \ordstr {〈number〉}.\@ordstring

\ordstr Formats a number or a TEX count register in the range of 0 to 999,999,999 as
an ordinal word.

Usage: \@Ordstring {〈number〉} / \Ordstr {〈number〉}.\@Ordstring

\Ordstr Formats a number or a TEX count register in the range of 0 to 999,999,999 as
an ordinal word, where the first letter is a capital letter.

3 Examples

Some examples using \numstring, \numstr and \@numstring:

2

0 =⇒ null
7 =⇒ sieben
13 =⇒ dreizehn
23 =⇒ dreiundzwanzig
42 =⇒ zweiundvierzig
99 =⇒ neunundneunzig
127 =⇒ hundertsiebenundzwanzig
999 =⇒ neunhundertneunundneunzig
1000 =⇒ tausend
1001 =⇒ tausendeins
2004 =⇒ zweitausendvier
2017 =⇒ zweitausendsiebzehn
2029 =⇒ zweitausendneunundzwanzig
9999 =⇒ neuntausendneunhundertneunundneunzig
10000 =⇒ zehntausend
101101 =⇒ hunderteintausendeinhunderteins
999999 =⇒ neunhundertneunundneunzigtausendneunhundertneunundneunzig
1000000 =⇒ eine Million
1234567 =⇒ eine Million zweihundertvierunddreißigtausendfünfhundertsieben-

undsechzig
123456789 =⇒ hundertdreiundzwanzig Millionen vierhundertsechsundfünfzig-

tausendsiebenhundertneunundachtzig
101101101 =⇒ hunderteins Millionen einhunderteintausendeinhunderteins
999999999 =⇒ neunhundertneunundneunzig Millionen neunhundertneunund-

neunzigtausendneunhundertneunundneunzig

Some examples using \ordstring, \ordstr and \@ordstring:
0 =⇒ nullte
7 =⇒ siebte
13 =⇒ dreizehnte
23 =⇒ dreiundzwanzigste
42 =⇒ zweiundvierzigste
99 =⇒ neunundneunzigste
127 =⇒ hundertsiebenundzwanzigste
999 =⇒ neunhundertneunundneunzigste
1000 =⇒ tausendste
1001 =⇒ tausenderste
2004 =⇒ zweitausendvierte
2017 =⇒ zweitausendsiebzehnte
2029 =⇒ zweitausendneunundzwanzigste
9999 =⇒ neuntausendneunhundertneunundneunzigste
10000 =⇒ zehntausendste
101101 =⇒ hunderteintausendeinhunderterste
999999 =⇒ neunhundertneunundneunzigtausendneunhundertneunundneunzig-

ste
1000000 =⇒ eine Millionste

3

1234567 =⇒ eine Million zweihundertvierunddreißigtausendfünfhundertsieben-
undsechzigste

123456789 =⇒ hundertdreiundzwanzig Millionen vierhundertsechsundfünfzig-
tausendsiebenhundertneunundachtzigste

101101101 =⇒ hunderteins Millionen einhunderteintausendeinhunderterste
999999999 =⇒ neunhundertneunundneunzig Millionen neunhundertneunund-

neunzigtausendneunhundertneunundneunzigste

Formatting the current page number (a LATEX counter) results in: Dies ist Seite
vier (\numstring{page}). Dies ist die vierte Seite (\ordstring{page}). Seite:
Vier (\Numstring{page}). Vierte Seite (\Ordstring{page}).

4 Options

The package has the following option:

showrangeerrors If a number larger than 999,999,999 is to be formatted, nor-
mally the number is not formatted as words, but using arabic digits. This
option changes this behaviour to display an error instead, thus notifying you
when you format too large a number

5 Creating your own formatting

You can modify output of the zahl2string macros in a limited way by providing
your own macros for formatting the numbers between ‘1’ and ‘19. But note that
if you simply want to add something to the suffix, , i.e. if you want to format
numbers with the suffix ‘tens’ (‘erstens’, ‘zweitens’ . . .), then you can simply say
\ordstr{〈number〉}ns, resulting in i.e. ‘zweiundvierzigstens’.

If on the other hand you want to create a more complicated formatting, then
you have to do the following:

• Create a macro for formatting the numbers ‘1’ to ‘19’, i.e. \my@neunzehnte.
See the predefined macros in section 7.3.2 on page 12, \ns@neunzehn,
\ns@neunzehns, \ns@neunzehne and \ns@neunzehnord for examples and
notes.

This macro has one parameter, the number (up to two digits, in the range
of ‘0’ to ‘19’. ‘0’ must expand to the generic suffix, i.e. ‘stens’; ‘19’ to ‘19’
simply format the number.

Do not forget to insert discretionary hyphens using \-, or hyphenation will
not be perfect!

• Create another macro you want to call, i.e. \mynumstring. This macro
takes one parameter, the number, and calls \ns@numstr using the following
parameters:

4

1. The number to be formatted (the parameter to \mynumstring).

2. The macro for formatting numbers ‘1’ to ‘19’, i.e. \my@neunzehnte.

3. The value that represents the number zero, i.e. ‘nulltens’.

4. The suffix for numbers larger than 999,999,999, i.e. ‘tens’.

• Call the macro \mynumstring with the number to format.

If you want to create a macro to format a LATEX-counter, create an additional
macro, i.e. \myLnumstring, that calls \mynumstring by saying:

\newcommand{\myLnumstring}[1]{%

\expandafter\mynumstring\csname c@#1\endcsname%

}

See also the notes and predefined macros in section 7.3.2 on page 12.

6 Notes/Limitations

• Ordinal numbers larger than 999999 do not look that good, as i.e. 1000000
gets formatted as ‘eine Millionste’ instead of ‘einmillionste’.

7 Implementation

7.1 Main macros

\numstring Usage: \numstring {〈LaTeX counter〉}.
Formats a LATEX counter in the range of 0 to 999,999,999 as words.

1 \newcommand{\numstring}[1]{%

2 \expandafter\@numstring\csname c@#1\endcsname%

3 }

\Numstring Usage: \Numstring {〈LaTeX counter〉}.
Formats a LATEX counter in the range of 0 to 999,999,999 as words. The first

letter is uppercase.

4 \newcommand{\Numstring}[1]{%

5 \expandafter\@Numstring\csname c@#1\endcsname%

6 }

\ordstring Usage: \ordstring {〈LaTeX counter〉}.
Formats a LATEX counter in the range of 0 to 999,999,999 as an ordinal word.

7 \newcommand{\ordstring}[1]{%

8 \expandafter\@ordstring\csname c@#1\endcsname%

9 }

5

\Ordstring Usage: \Ordstring {〈LaTeX counter〉}.
Formats a LATEX counter in the range of 0 to 999,999,999 as an ordinal word.

The first letter is uppercase.

10 \newcommand{\Ordstring}[1]{%

11 \expandafter\@Ordstring\csname c@#1\endcsname%

12 }

\@numstring Usage: \@numstring {〈number or TEX count register〉}.
Formats a number or a TEX count register in the range of 0 to 999,999,999 as

words.

13 \newcommand{\@numstring}[1]{%

14 \ns@numstr{#1}\ns@neunzehns{null}{}%

15 }

\@Numstring Usage: \@Numstring {〈number or TEX count register〉}.
Formats a number or a TEX count register in the range of 0 to 999,999,999 as

words. The first letter is uppercase.

16 \newcommand\@Numstring[1]{%

17 \expandafter\@@Numstring\expandafter{\number#1}%

18 }

\@@Numstring Support macro for \@Numstring to make \@Numstring robust.

19 \DeclareRobustCommand{\@@Numstring}[1]{%

20 \protected@edef\@tempa{\@numstring{#1}}%

21 \expandafter\MakeUppercase\@tempa%

22 }

\@ordstring Usage: \@ordstring {〈number or TEX count register〉}.
Formats a number or a TEX count register in the range of 0 to 999,999,999 as

an ordinalword, i.e. ‘erste’, ‘zweite’ et cetera.

23 \newcommand{\@ordstring}[1]{%

24 \ns@numstr{#1}\ns@neunzehnord{null\-te}{te}%

25 }

\@Ordstring Usage: \@Ordstring {〈number or TEX count register〉}.
Formats a number or a TEX count register in the range of 0 to 999,999,999 as

an ordinalword, i.e. ‘Erste’, ‘Zweite’ et cetera. The first letter is uppercase.

26 \newcommand{\@Ordstring}[1]{%

27 \expandafter\@@Ordstring\expandafter{\number#1}%

28 }

\@@Ordstring Support macro for \@Ordstring to make \@Ordstring robust.

29 \DeclareRobustCommand{\@@Ordstring}[1]{%

30 \protected@edef\@tempa{\@ordstring{#1}}%

31 \expandafter\MakeUppercase\@tempa%

32 }

6

We provide public aliases for the macros. The macros beginning with @ are
still necessary in order to be able to format the page number as a string. (see
ltpageno.dtx)

33 \let\numstr\@numstring%

34 \let\Numstr\@Numstring%

35 \let\ordstr\@ordstring%

36 \let\Ordstr\@Ordstring%

7.2 Option processing

37 \DeclareOption{publicnumstr}{%

38 \PackageWarning{zahl2string}{Option ‘publicnumstr’ is %

39 deprecated and will be removed in version 1.3}%

40 }

\ns@numoutofrange Formats a number that is too large to be formatted as words.
Usage: \ns@numoutofrange {〈number〉} {〈suffix 〉}.
This macro is redefined to show an error message using the package option

showrangeerrors.

41 \def\ns@numoutofrange#1#2{%

42 \number#1#2%

43 }

44 \DeclareOption{showrangeerrors}{%

45 \def\ns@numoutofrange#1#2{%

46 \PackageError{zahl2string}{The number ‘#1’ is too large %

47 to be formatted using zahl2string}{The largest possible %

48 number is 999,999,999.}

49 }%

50 }

51 \ProcessOptions\relax

7.3 Internal macros

7.3.1 Splitting and formatting a number

\ns@numstr Base macro for formatting a number.
Usage: \ns@numstr {〈number〉} {〈macro〉} {〈nullvalue〉} {〈suffix 〉}, where

〈macro〉 is the macro to use for the numbers between 1 and 19, as these re-
quire some special treatment, 〈nullvalue〉 is the value this macro expands to when
〈number〉 is zero, and 〈suffix 〉 is text added as a suffix to a number larger than
999,999,999.

52 \def\ns@numstr#1#2#3#4{%

53 \ifnum\number#1<\@ne%

54 #3%

55 \else\ifnum\number#1<1000000000 %

56 \expandafter\ns@numstring\expandafter{\number#1}#2%

57 \else%

7

58 \ns@numoutofrange{#1}{#4}%

59 \fi\fi%

60 }

\ns@numstring Formats a number as words.
Usage: \ns@numstring {〈number〉} {〈macro〉}, where 〈macro〉 is the macro to

use for the numbers between 1 and 19, as these require some special treatment.
Note: 〈number〉 must be a real number consisting of digits in the range 0 to 9!

It must not be a TEX count register!
How does this work? Modulo operations are not trivial in TEX as in order to

achieve a mod b you have to calculate a− (a÷ b)× b. This is complicated and also
not expandable, so another solution has to be found.

TEX’s capabilities of parsing text using macro arguments are fairly strong, so
why not use them? It would be much easier if it would be possible of defining a
macro with, say, six parameters, where each parameter is one digit of the number
to be formatted. Then it would be possible to directly access each digit (or sev-
eral digits combined by grouping several parameters) without having to perform
lengthy modulo calculations.

Adding leading zeros to a number is easily done by comparing it using \ifnum
and adding zeros if the number is too small. However, the macro must not receive
the \ifnum et.al. tokens as a parameter, but the result of the expansion, that is
the number with leading zeros.

\expandafter would not suffice, as it expands a macro only once, not fully.
\edef would accomplish the task at hand, however \edef is not fully expandable.

So what do we do? We take advantage of the fact that when expanding an
\ifcase, TEX goes on expanding until it has made sure that the number for the
\ifcase is complete. So immediately after the \ifcase we launch into several
nested \ifnums, which TEX expands dutifully in order to determine the number
to use.

What these nested \ifnums do is the following: Depending on the length
of 〈number〉, they expand to a digit between one and nine, one being the digit
if 〈number〉 is less than 10 and nine being the digit if 〈number〉 is larger than
99,999,999.

Then TEX uses this digit between one and nine to jump to the appropriate part
of the \ifcase-clause. There 〈number〉 is prefixed with the necessary amount of
zeros to result in a number exactly nine digits long: For the digit one (resulting
from the nested \ifnums), eight leading zeros have to be prefixed, as 〈number〉
is only one digit long, for the digit two, seven zeros are prefixed, as 〈number〉 is
less than 100 (but more than 9) et cetera, until for digit nine no zeros have to be
prefixed, as 〈number〉 is already nine digits long.

Let’s have an example: Suppose 〈number〉 is 42. Then the result of the nested
\ifnums is 2, as 〈number〉 is not less than 10 but less than 100 (the second \ifnum
is true). This 2 leads to jumping to part after the second \or (before the first \or
is the part for the number 0, in this case left blank, and after the first \or for the
number 1), which is 0000000#1. #1 is 42. So the result is: 000000042, a number
prefixed with leading zeros and exactly nine digits long.

8

Another example: Suppose 〈number〉 is 12,345,678. Then the result of the
nested \ifnums is 8, as the eigths \ifnum is true (less than 100,000,000 but not
less than 10,000,000). Then only one zero is prefixed, resulting in 012345678.

However, we are not finished yet, as TEX does not expand further. So we are
left (picking up the second example above) with this: 012345678\or12345678\or
(the second incarnation of 12345678 is due to the ninth part of the \ifcase clause,
\or#1).

We do not need all this \or baggage, we only want the number. But TEX is
good at matching text using macros with delimited parameters, so we just define
\ns@@numstring in a way that gobbles up the first \or and whatever follows.

And we are done: We have a number padded perfectly with leading zeros to a
length of nine digits!

Implementation note In Version 1.0, we used \csname . . . \endcsname to
add the leading zeros, as \csname . . . \endcsname expands everything inbetween
until only unexpandable tokens remain, in this case digits (the \ifnums are ex-
panded). Afterwards, the resulting control sequence was converted into separate
tokens using \string and finally, the backslash at the beginning was gobbled by
\ns@@numstring as its first (and unused) argument.

Unfortunately, this had its price: For every number we formatted using
\ns@numstring and that had not been formatted before, a new entry was in-
serted into the hash table TEX uses to store all control sequences. So if you had
a document where you formatted a lot of numbers this way, you would run out
of hash table space, and TEX would complain. (The number of hash table entries
used is indicated in the log-file as ‘multiletter control sequences’.)

This was less than optimal, so we changed the implementation to this \ifcase-
\ifnum construct.

61 \def\ns@numstring#1#2{%

62 \expandafter\ns@@numstring%

63 \ifcase%

64 \ifnum#1<10 1%

Why are the constants predefined by the LATEX-kernel used instead of numbers?
Because they save tokens: 1000 are four tokens, \@m is only one.

65 \else\ifnum#1<100 2%

66 \else\ifnum#1<\@m 3%

67 \else\ifnum#1<\@M 4%

68 \else\ifnum#1<100000 5%

69 \else\ifnum#1<1000000 6%

70 \else\ifnum#1<10000000 7%

71 \else\ifnum#1<100000000 8%

72 \else9%

73 \fi\fi\fi\fi\fi\fi\fi\fi %

74 \or00000000#1% case 1: Add 8 leading zeros

75 \or0000000#1% case 2: Add 7 leading zeros

76 \or000000#1% case 3: Add 6 leading zeros

77 \or00000#1% case 4: Add 5 leading zeros

9

78 \or0000#1% case 5: Add 4 leading zeros

79 \or000#1% case 6: Add 3 leading zeros

80 \or00#1% case 7: Add 2 leading zeros

81 \or0#1% case 8: Add 1 leading zero

82 \or#1% case 9: Add no leading zeros

The next \or is only necessary because \ns@@numstring needs an \or as a
delimiter of the number:

83 \or%

The last parameter to \ns@@numstring is 〈macro〉; we delimit it using \@nil:

84 \@nil#2%

Finally we end the \ifcase (note that this is after the number has been
formatted):

85 \fi%

86 }

\ns@@numstring Expands to a number in words between 1 and 999,999,999.
Usage: \ns@@numstring {〈9. digit〉} {〈8. digit〉} {〈7. digit〉} {〈6. digit〉}

{〈5. digit〉} {〈4. digit〉} {〈3rd - 1st digit〉} {〈(ignored)〉} {〈macro〉}, where 〈macro〉
is, as is the case with \ns@numstring, the macro to use for the numbers between
1 and 19, as these require some special treatment.

\or and the following #8 (〈ignored〉) gobble up whatever was left from the
expansion of \ifcase in \ns@numstring. \@nil acts as a delimiter for the last
parameter, 〈macro〉.
87 \def\ns@@numstring#1#2#3#4#5#6#7\or#8\@nil#9{%

88 \ifnum#1#2#3>\z@

89 \ns@million#1#2#3%

We insert a space if a number follows:

90 \ifnum#4#5#6>\z@\space\fi%

91 \fi%

92 \ifnum#4#5#6>\z@%

93 \ns@hundred#4#5#6{#1#2#3}{#4#5}\ns@neunzehn%

If there has been a number larger than one before the ‘tausend’, insert a dis-
cretionary hyphen before:

94 \ifnum#4#5#6>\@ne\-\fi%

95 tau\-send%

If there will be a number after the ‘tausend’, insert a discretionary hyphen
after:

96 \ifnum#7>\z@\-\fi%

97 \fi%

98 \ns@hundred#7{#4#5#6}1#9%

99 }

10

\ns@million Expands to millions.
Usage: \ns@million {〈third digit〉} {〈second digit〉} {〈first digit〉}.

100 \def\ns@million#1#2#3{%

101 \ifnum#1#2#3=\@ne%

102 \ns@hundred#1#2#301\ns@neunzehne%

103 \space%

104 Mil\-lion%

105 \else%

106 \ns@hundred#1#2#301\ns@neunzehns%

107 \space%

108 Mil\-lio\-nen%

109 \fi%

110 }

\ns@hundred Expands to a number in words between 1 and 100.
Usage: \ns@hundred {〈third digit〉} {〈second digit〉} {〈first digit〉} {〈shownumber〉}

{〈showone〉} {〈macro〉}.
〈shownumber〉 defines if the number before the hundert (‘hundred’) should be

shown, i.e. einhundert (‘onehundred’) instead of hundert. 0 is false, everything
else true. Can contain more than one digit.

〈showone〉 defines if 〈macro〉 should be called for the number 1. 0 is false,
everything else true. Can contain more than one digit.

What does all this code do? First the third digit (‘hundred’), contained in #1,
is expanded – if it is not zero. However, there is a catch: If the third digit is one,
this digit is only included in the result of this macro if #4 says so. The reason is
that normally you would say hunderteins (‘101’) instead of einhunderteins –
but not if there is a fourth digit. Then the digit has to be included in the output
of the macro, i.e. tausendeinhunderteins

So we want to include the digit in the output of the macro, if #3 is larger than
one or #4 is larger than zero. We could use two \ifnums to accomplish this, but
it can be combined into a single \ifnum, saving tokens and time:

We check if #4#1 is larger than one. That means that if #1, the third digit, is
larger than one, it is included in the output. But that also means that if #4 is not
zero, #4#1 is always at least 10, which is also larger than one and exactly what
we want.

After successfully processing the third digit, the remaining last two digits (#2
and #3) are not really complicated anymore. We perform some special treatment
of the numbers between 1 and 19 as these numbers are not constructed systemat-
ically. Here we have to perform a check similar to the one performed for the third
digit: We have to check if we have to output the number if it is 1, using the same
trick for a logical or as before, only this time with #5, #2 and #3.

The macro to output 1 to 19 is parametrized as #6 in order to be able to use
different macros for normal numbers and ordinal numbers.

If the last two digits are larger than 19, we first output the third digit using
\ns@neunzehn, followed by und (‘and’) and then the second digit. Here we don’t
have to use the parametrized macro as before, as the ordinal suffix is appended at
the end of the number, not inbetween.

11

But where to get the suffix from? We could pass it as a macro, but that
would be tedious. So we simply define the macro to output the numbers 1 to 19
(\ns@neunzehns for normal numbers and \ns@neunzehnord for ordinal numbers)
to output the suffix if called with 0 as its parameter.

And we are done!

111 \def\ns@hundred#1#2#3#4#5#6{%

We expand the third digit:

112 \ifnum#1>\z@%

Logical OR hidden in #4#1 (see above):

113 \ifnum#4#1>\@ne\ns@neunzehn#1\-\fi%

114 hun\-dert%

We insert a discretionary hyphen, if a number follows:

115 \ifnum#2#3>\z@\-\fi%

116 \fi%

We expand the first an second digit:

117 \ifnum#2#3<20 %

Again: Logical OR in #5#2#3:

118 \ifnum#5#2#3>\@ne#6{#2#3}\fi%

119 \else%

120 \ifnum#3>\z@\ns@neunzehn#3\-und\-\fi%

121 \ns@neunzig#2%

122 #60%

123 \fi%

124 }

7.3.2 Macros for formatting ‘1’ to ‘19’

Very important: The position for 0 must expand to the suffix of the number (any
number), see the explanations for \ns@hundred above. If it expands to a text (as
opposed to \@empty), this text must be prefixed by a discretionary hyphen!

\ns@neunzehn Expands to ein (‘1’) to neunzehn (‘19’).

125 \def\ns@neunzehn#1{%

126 \ifcase#1\@empty\or ein\or zwei\or drei\or vier\or f\"unf\or sechs\or%

127 sie\-ben\or acht\or neun\or zehn\or elf\or zw\"olf\or drei\-zehn\or%

128 vier\-zehn\or f\"unf\-zehn\or sech\-zehn\or sieb\-zehn\or%

129 acht\-zehn\or neun\-zehn\fi%

130 }

\ns@neunzehns Expands to eins (‘1’) to neunzehn (‘19’). 0 expands to \@empty.
Why \@empty instead of nothing? Because then TEX would insert a \relax

before the first \or in order to finish expansion of the number. This \relax would
remain in the output and would stay there even when \edefed, whereas \@empty
expands to nothing.

12

This is necessary for \Numstring and \Ordstring, as they convert the first
token of the \edefed result of \numstring and \ordstring to uppercase, and
they need this token to be the first letter of the number, not \relax.

131 \def\ns@neunzehns#1{%

132 \ifcase#1\@empty\or eins\else\ns@neunzehn{#1}\fi%

133 }

\ns@neunzehnord Expands to erste (‘1st’) to neunzehnte (‘19th’). 0 expands to ste.
134 \def\ns@neunzehnord#1{%

135 \ifcase#1\-ste\or er\-ste\or zwei\-te\or drit\-te\or vier\-te\or%

136 f\"unf\-te\or sech\-ste\or sieb\-te\or ach\-te\or neun\-te\or%

137 zehn\-te\or elf\-te\or zw\"olf\-te\or drei\-zehn\-te\or%

138 vier\-zehn\-te\or f\"unf\-zehn\-te\or sech\-zehn\-te\or%

139 sieb\-zehn\-te\or acht\-zehn\-te\or neun\-zehn\-te\fi%

140 }

\ns@neunzig Expands to zwanzig (twenty) to neunzig (ninety) in steps of ten.
141 \def\ns@neunzig#1{%

142 \ifcase#1\or\or zwan\-zig\or drei\ss ig\or vier\-zig\or%

143 f\"unf\-zig\or sech\-zig\or sieb\-zig\or acht\-zig\or%

144 neun\-zig\fi%

145 }

Change History

1.1
General: Options ‘publicnumstr’

and ‘showrangeerrors’ added. . . 7
Range expanded to 999,999,999. 1

\ns@@numstring: Changed to
match reeimplementation of
ns@numstring. 10

Formatting of millions added. . 10
\ns@million: Macro added. 11
\ns@neunzehn: Hyphenation

added. 12
\ns@neunzehnord: Hyphenation

added. 13
\ns@neunzig: Hyphenation added. 13

\ns@numstr: Macro added 7

\ns@numstring: Reimplemented to
avoid using up TeX’s space for
control sequences 8

1.2

General: Added 7

Option ‘publicnumstr’ depre-
cated 7

1.2.1

\@@Numstring: Added 6

\@@Ordstring: Added 6

General: @Numstring and @Ord-
string made robust. 1

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

Symbols
\@@Numstring 17, 19 13

\@@Ordstring 27, 29
\@Numstring . 2, 5, 16, 34
\@numstring

. . . 2, 2, 13, 20, 33
\@Ordstring 2, 11, 26, 36
\@ordstring

. . . 2, 8, 23, 30, 35

N
\ns@@numstring . . 62, 87
\ns@hundred

93, 98, 102, 106, 111

\ns@million 89, 100

\ns@neunzehn . . . 93,
113, 120, 125, 132

\ns@neunzehne 102

\ns@neunzehnord 24, 134

\ns@neunzehns
. 14, 106, 131

\ns@neunzig . . . 121, 141

\ns@numoutofrange .
. 41, 45, 58

\ns@numstr . . 14, 24, 52

\ns@numstring . . . 56, 61

\Numstr 2, 34

\numstr 2, 33

\Numstring 2, 4

\numstring 1, 2

O

\Ordstr 2, 36

\ordstr 2, 35

\Ordstring 2, 10

\ordstring 2, 7

14

